Convergence Analysis of a Trust-Region Method under Noisy Settings

Liyuan Cao

Lehigh University \Rightarrow Peking University

October 23, 2021

Liyuan Cao

INFORMS 2021

October 23, 2021 1 / 17

Albert S. Berahas U of Michigan

Katya Scheinberg Cornell University

$$\min_{x\in\mathbb{R}^n}\phi(x)$$

 ϕ is smooth but we only have access to

$$\begin{cases} f(x) = \phi(x) + e(x) \\ g_k & \text{instead of} \\ H_k & \nabla \phi(x) \\ \nabla^2 \phi(x) \end{cases}$$

Trust Region Method

Algorithm: Modified Trust Region Algorithm

Inputs: Starting point x_0 , initial trust region radius δ_0 , and hyperparameters $\eta_1 > 0, \eta_2 > 0, \tau \in (0, 1)$ for controlling the trust region radius.

for $k = 0, 1, 2, \dots$ do

Build a quadratic model $m_k(x_k + s) = \phi(x_k) + \langle g_k, s \rangle + 0.5 \langle H_k s, s \rangle$

2 Compute s_k by approximately minimizing m_k in $B(x_k, \delta_k)$ so that it satisfies the *Cauchy decrease condition*.

3 Compute

$$\rho_k = \frac{f(x_k) - f(x_k + s_k) + r}{m_k(x_k) - m_k(x_k + s_k)}$$

4 **if** $\rho_k \ge \eta_1$ **then** Set $x_{k+1} = x_k + s_k$ and

$$\delta_{k+1} = \begin{cases} \tau^{-1}\delta_k & \text{if } \|g_k\| \ge \eta_2 \delta_k \\ \tau \delta_k, & \text{if } \|g_k\| < \eta_2 \delta_k \end{cases}$$

 $\mathbf{5}$

1

else

Assumptions

 $\begin{aligned} \|\nabla\phi(x) - \nabla\phi(y)\| &\leq L \|x - y\| \text{ for all } (x, y) \in \mathbb{R}^n \times \mathbb{R}^n\\ \phi(x) &\geq \hat{\phi} \text{ for all } x \in \mathbb{R}^n. \end{aligned}$

random variables:	X_k	X_k^+	\mathcal{E}_k	\mathcal{E}_k^+	
realizations:	x_k	$x_k + s_k$	$ e(x_k) $	$ e(x_k+s_k) $	
random variables:	G_k	\mathcal{H}_k	M_k	Δ_k	ρ_k
realizations:	g_k	H_k	m_k	δ_k	ρ_k

We assume for all $k = 0, 1, \ldots$:

- $\|\mathcal{H}_k\| \leq \kappa_{\text{bhm}}$ for some constant κ_{bhm} (bound on hessian of model) deterministically;
- $\mathbb{P}\{\|G_k \nabla \phi(X_k)\| \le \kappa_{\text{eg}} \Delta_k \mid \mathcal{F}_{k-1}\} \ge p_1 \text{ for some constant } \kappa_{\text{eg}} \text{ (error of gradient) and } p_1 > 0.5, \text{ where } \mathcal{F}_{k-1} \text{ is the sigma-algebra generated by all the random events before iteration } k;$

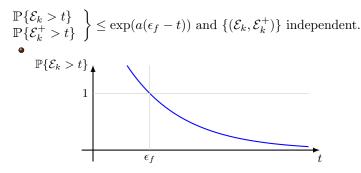
•
$$\mathbb{P}\{\mathcal{E}_k > t\}$$

 $\mathbb{P}\{\mathcal{E}_k^+ > t\} \} \leq \exp(a(\epsilon_f - t)) \text{ and } \{(\mathcal{E}_k, \mathcal{E}_k^+)\} \text{ independent.}$

Assumptions

 $\mathbb{P}\{\|G_k - \nabla\phi(X_k)\| \le \kappa_{\rm eg}\Delta_k \mid \mathcal{F}_{k-1}\} \ge p_1$

• Sample size needs to increase when Δ_k is small.



• \mathcal{E}_k can be dependent \mathcal{E}_k^+ , e.g. evaluated with the same sample set in an ERM setting.

While first-order convergence analyses for nonconvex functions typically work towards a result of the form

 $\min\{\|\nabla\phi(x_k)\|: \ 0 \le k \le T - 1\} \le \begin{array}{c} \text{a function of } T \text{ that} \\ \text{converges to } 0 \text{ as } T \text{ increases}, \end{array}$

we could not have that result due to stochasticity. Instead, the main goal is to derive a probabilistic result of the form

for any sufficiently large ϵ .

Lemmas for Individual Iterations

Lemma (sufficient condition for successful step)

If
$$||g_k - \nabla \phi(x_k)|| \le \kappa_{\text{eg}} \delta_k$$
 and $e(x_k) - e(x_k + s_k) + r \ge 0$, and

$$\delta_k \le \min\left\{\frac{1}{\kappa_{eg} + \frac{L + \kappa_{\text{bhm}} + 2\kappa_{eg}}{\kappa_{fcd}(1 - \eta_1)}}, \frac{1}{\kappa_{eg} + \eta_2}\right\} \|\nabla\phi(x_k)\| := C_1 \|\nabla\phi(x_k)\|,$$

then $\rho_k \ge \eta_1$ and $||g_k|| \ge \eta_2 \delta_k$.

Lemma (progress made in each iteration)

Let
$$h(\delta) = \frac{1}{2}\eta_1\eta_2\kappa_{fcd}\min\left\{\frac{\eta_2}{\kappa_{bhm}},1\right\}\delta^2 := C_2\delta^2$$
. Then we have

$$\begin{split} \phi(x_k) - \phi(x_{k+1}) &\geq \\ & \begin{cases} h(\delta_k) - e(x_k) + e(x_k + s_k) - r & \text{if } \rho_k \geq \eta_1 \text{ and } \|g_k\| \geq \eta_2 \delta_k \\ -e(x_k) + e(x_k + s_k) - r & \text{if } \rho_k \geq \eta_1 \\ 0 & \text{if } \rho_k < \eta_1. \end{cases} \end{split}$$

Lemma (sufficient condition for successful step)

If
$$||g_k - \nabla \phi(x_k)|| \le \kappa_{\text{eg}} \delta_k$$
 and $e(x_k) - e(x_k + s_k) + r \ge 0$, and

$$\delta_k \le \min\left\{\frac{1}{\kappa_{eg} + \frac{L + \kappa_{\text{bhm}} + 2\kappa_{eg}}{\kappa_{fcd}(1 - \eta_1)}}, \frac{1}{\kappa_{eg} + \eta_2}\right\} \|\nabla\phi(x_k)\| := C_1 \|\nabla\phi(x_k)\|,$$

then $\rho_k \geq \eta_1$ and $||g_k|| \geq \eta_2 \delta_k$.

Define

$$I_{k} = \mathbb{1}\{\|G_{k} - \nabla\phi(X_{k})\| \le \kappa_{\text{eg}}\Delta_{k}\}$$
$$\mathbb{P}\{I_{k} = 1 \mid \mathcal{F}_{k-1}\} \ge p_{1} \text{ assumed}$$
$$J_{k} = \mathbb{1}\{\mathcal{E}_{k} + \mathcal{E}_{k}^{+} \le r\}$$
$$\Lambda_{k} = \mathbb{1}\{\Delta_{k} > \bar{\Delta}\}$$
$$\Lambda'_{k} = \mathbb{1}\{\Delta_{k} > \tau\bar{\Delta}\}$$

where $\bar{\Delta} = C_1 \min\{\|\nabla \phi(X_k)\| : k = 1, 2, \dots, T-1\}.$

Define

$$\Theta_k = \mathbb{1}\{\rho_k \ge \eta_1 \text{ and } \|G_k\| \ge \eta_2 \Delta_k\}$$

$$\Theta'_k = \mathbb{1}\{\rho_k \ge \eta_1\}$$

Lemma (progress made in each iteration)

Let
$$h(\delta) = \frac{1}{2}\eta_1\eta_2\kappa_{fcd}\min\left\{\frac{\eta_2}{\kappa_{bhm}},1\right\}\delta^2 := C_2\delta^2$$
. Then we have

$$\phi(x_k) - \phi(x_{k+1}) \ge \begin{cases} h(\delta_k) - e(x_k) + e(x_k + s_k) - r & \text{if } \rho_k \ge \eta_1 \text{ and } \|g_k\| \ge \eta_2 \delta_k \\ -e(x_k) + e(x_k + s_k) - r & \text{if } \rho_k \ge \eta_1 \\ 0 & \text{if } \rho_k < \eta_1. \end{cases}$$

Lemmas

Lemma (sufficient condition for successful step)

If $I_k J_k = 1$ and $\Lambda_k = 0$ then $\Theta_k = 1$.

Lemma (progress made in each iteration)

Let
$$h(\delta) = \frac{1}{2}\eta_1\eta_2\kappa_{fcd}\min\left\{\frac{\eta_2}{\kappa_{bhm}},1\right\}\delta^2 := C_2\delta^2$$
. Then we have

$$\phi(X_k) - \phi(X_{k+1}) \ge \begin{cases} h(\Delta_k) - \mathcal{E}_k - \mathcal{E}_k^+ - r & \text{if } \Theta_k = 1\\ -\mathcal{E}_k - \mathcal{E}_k^+ - r & \text{if } \Theta'_k = 1\\ 0 & \text{if } \Theta'_k = 0. \end{cases}$$

Lemma (sufficient condition for successful step)

If $I_k J_k = 1$ and $\Lambda_k = 0$ then $\Theta_k = 1$.

Lemma (progress made in each iteration)

Let
$$h(\delta) = \frac{1}{2}\eta_1\eta_2\kappa_{fcd}\min\left\{\frac{\eta_2}{\kappa_{bhm}},1\right\}\delta^2 := C_2\delta^2$$
. Then we have

$$\phi(X_k) - \phi(X_{k+1}) \ge \begin{cases} h(\Delta_k) - \mathcal{E}_k - \mathcal{E}_k^+ - r & \text{if } \Theta_k = 1\\ -\mathcal{E}_k - \mathcal{E}_k^+ - r & \text{if } \Theta_k' = 1\\ 0 & \text{if } \Theta_k' = 0. \end{cases}$$

Lemma (total progress)

For any positive integer T, we have

$$h(\tau\bar{\Delta})\sum_{k=0}^{T-1}\Theta_k\Lambda'_k \le \phi(x_0) - \hat{\phi} + \sum_{k=0}^{T-1}\Theta'_k\left(\mathcal{E}_k + \mathcal{E}_k^+ + r\right).$$

Liyuan Cao

Lemma (total progress)

For any positive integer T, we have

$$h(\tau\bar{\Delta})\sum_{k=0}^{T-1}\Theta_k\Lambda'_k \le \phi(x_0) - \hat{\phi} + \sum_{k=0}^{T-1}\Theta'_k\left(\mathcal{E}_k + \mathcal{E}_k^+ + r\right).$$

$$h(\tau\bar{\Delta}) = C_2 \left(\tau C_1 \min\{\|\nabla\phi(X_k)\|: k = 1, 2, \dots, T-1\}\right)^2$$

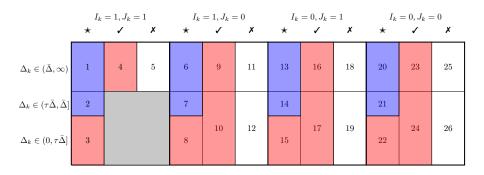
Classification of Iterations

	$I_k = 1, J_k = 1$			$I_k = 1, J_k = 0$		$I_k = 0, J_k = 1$			$I_k = 0, J_k = 0$			
	*	1	×	*	1	×	*	1	×	*	1	×
$\Delta_k \in (\bar{\Delta},\infty)$	1	4	5	6	9	11	13	16	18	20	23	25
$\Delta_k \in (\tau\bar{\Delta},\bar{\Delta}]$	2			7	7		14			21		
$\Delta_k \in (0,\tau\bar{\Delta}]$	3			8	10	12	15	17	19	22	24	26

Lemma (sufficient condition for successful step)

If $I_k J_k = 1$ and $\Lambda_k = 0$ then $\Theta_k = 1$.

Classification of Iterations



Lemma (total progress)

For any positive integer T, we have

$$h(\tau\bar{\Delta})\sum_{k=0}^{T-1}\Theta_k\Lambda'_k \le \phi(x_0) - \hat{\phi} + \sum_{k=0}^{T-1}\Theta'_k\left(\mathcal{E}_k + \mathcal{E}_k^+ + r\right).$$

Lemma of Total Progress

Since $\{(\mathcal{E}_k, \mathcal{E}_k^+)\}$ are subexponential and independent

Lemma (total loss)

For any $t \geq 0$,

$$\mathbb{P}\left\{\sum_{k=0}^{T-1} \left(\mathcal{E}_k + \mathcal{E}_k^+ + r\right) \ge T(4/a + 2\epsilon_f + r) + t\right\} \le \exp\left(-\frac{a}{4}t\right).$$

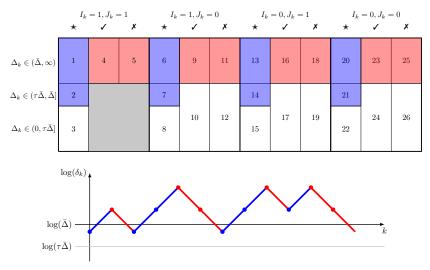
Lemma (total progress)

For any positive integer T, we have

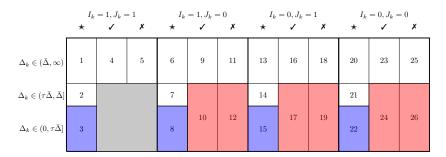
$$h(\tau\bar{\Delta})\sum_{k=0}^{T-1}\Theta_k\Lambda'_k \le \phi(x_0) - \hat{\phi} + \sum_{k=0}^{T-1}\Theta'_k\left(\mathcal{E}_k + \mathcal{E}_k^+ + r\right)$$
$$< \phi(x_0) - \hat{\phi} + T(4/a + 2\epsilon_f + r) + t$$

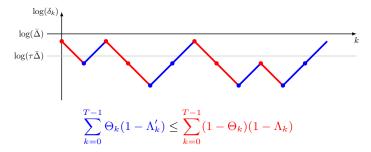
with probability at lease $1 - \exp\left(-\frac{a}{4}t\right)$.

Ups and Downs of the Radius

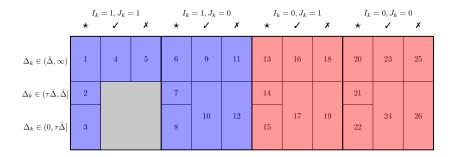


Downs and Ups of the Radius





Iterations with Sufficiently Accurate Gradient Estimate



Lemma

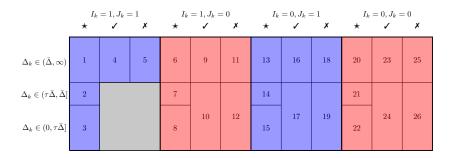
Assume $\mathbb{P}\{I_k = 1 \mid \mathcal{F}_{k-1}\} \ge p_1$ holds. By Azuma-Hoeffding inequality, for any positive integer T and any $\hat{p}_1 \in [0, p_1]$ we have

$$\mathbb{P}\left\{\sum_{k=0}^{T-1} I_k > \hat{p}_1 T\right\} \ge 1 - \exp\left(-\frac{(1-\hat{p}_1/p_1)^2}{2}T\right).$$

Liyuan Cao

INFORMS 2021

Iterations with Sufficiently Accurate Function Evaluation



Lemma

Assume both $\mathbb{P}\{\mathcal{E}_k > t\}$ and $\mathbb{P}\{\mathcal{E}_k^+ > t\}$ are $\leq \exp(a(\epsilon_f - t))$. Let $p_0 = 1 - 2\exp(a[\epsilon_f - r/2])$. For any positive integer T and any $\hat{p}_0 \in [0, p_0]$, we have

$$\mathbb{P}\left\{\sum_{k=0}^{T-1} J_k > \hat{p}_0 T\right\} \ge 1 - \exp\left(-2(p_0 - \hat{p}_0)^2 T\right).$$

Liyuan Cao

Analysis

$$\sum_{k=0}^{T-1} (1 - \Theta_k) \Lambda_k \le \sum_{k=0}^{T-1} \Theta_k \Lambda'_k + \log_\tau \left(\frac{\bar{\Delta}}{\delta_0}\right) + 1$$
$$\sum_{k=0}^{T-1} \Theta_k (1 - \Lambda'_k) \le \sum_{k=0}^{T-1} (1 - \Theta_k) (1 - \Lambda_k)$$
$$\mathbb{P}\left\{\sum_{k=0}^{T-1} I_k > \hat{p}_1 T\right\} \ge 1 - \exp\left(-\frac{(1 - \hat{p}_1/p_1)^2}{2}T\right)$$
$$\mathbb{P}\left\{\sum_{k=0}^{T-1} J_k > \hat{p}_0 T\right\} \ge 1 - \exp\left(-2(p_0 - \hat{p}_0)^2 T\right)$$
$$\Downarrow$$

$$\mathbb{P}\left\{\sum_{k=0}^{T-1}\Theta_{k}\Lambda_{k}'>\left(\hat{p}_{0}+\hat{p}_{1}-\frac{3}{2}\right)T-\frac{1}{2}\log_{\tau}\left(\frac{\bar{\Delta}}{\delta_{0}}\right)-\frac{1}{2}\right\}\\ \geq 1-\exp\left(-\frac{(1-\hat{p}_{1}/p_{1})^{2}}{2}T\right)-\exp\left(-2(p_{0}-\hat{p}_{0})^{2}T\right)$$

Main Result

Theorem

Let assumptions hold. Given any $\epsilon > \sqrt{\frac{4\epsilon_f + 8/a + 2r}{C_2 \tau^2 C_1^2 (2p_0 + 2p_1 - 3)}}$, we have

$$\mathbb{P}\left\{\min\{\|\nabla\phi(X_k)\|: \ 0 \le k \le T - 1\} \le \epsilon\right\} \ge 1 - \exp\left(-\frac{(1 - \hat{p}_1/p_1)^2}{2}T\right) - \exp\left(-2(p_0 - \hat{p}_0)^2T\right) - \exp\left(-\frac{a}{4}t\right)$$

for any \hat{p}_0 and \hat{p}_1 such that $\hat{p}_0 + \hat{p}_1 \in \left(\frac{3}{2} + \frac{2\epsilon_f + 4/a + r}{C_2(\tau C_1 \epsilon)^2}, p_0 + p_1\right]$, any $t \ge 0$, and any

$$T \ge \left(\hat{p}_0 + \hat{p}_1 - \frac{3}{2} - \frac{2\epsilon_f + 4/a + r}{C_1(\tau C_2 \epsilon)^2}\right)^{-1} \left[\frac{\phi(x_0) - \hat{\phi} + t}{C_1(\tau C_2 \epsilon)^2} + \frac{1}{2}\log_\tau\left(\frac{C_2 \epsilon}{\delta_0}\right) + \frac{1}{2}\right].$$

Theorem

Let assumptions hold. Given any $\epsilon > \sqrt{\frac{4\epsilon_f + 8/a + 2r}{C_2 \tau^2 C_1^2 (2p_0 + 2p_1 - 3)}}$, we have

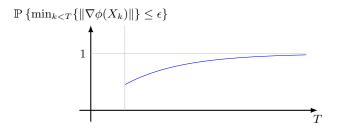
$$\mathbb{P}\left\{\min\{\|\nabla\phi(X_k)\|: \ 0 \le k \le T - 1\} \le \epsilon\} \ge 1 - \exp\left(-\frac{(1 - \hat{p}_1/p_1)^2}{2}T\right) - \exp\left(-2(p_0 - \hat{p}_0)^2T\right) - \exp\left(-\frac{a}{4}t\right)$$

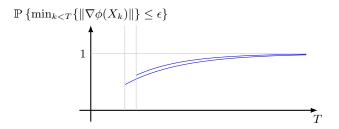
for any \hat{p}_0 and \hat{p}_1 such that $\hat{p}_0 + \hat{p}_1 \in \left(\frac{3}{2} + \frac{2\epsilon_f + 4/a + r}{C_2(\tau C_1 \epsilon)^2}, p_0 + p_1\right]$, any $t \ge 0$, and any

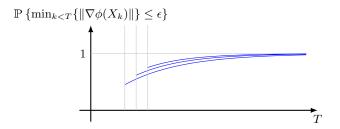
$$T \ge \left(\hat{p}_0 + \hat{p}_1 - \frac{3}{2} - \frac{2\epsilon_f + 4/a + r}{C_1(\tau C_2 \epsilon)^2}\right)^{-1} \left[\frac{\phi(x_0) - \hat{\phi} + t}{C_1(\tau C_2 \epsilon)^2} + \frac{1}{2}\log_\tau\left(\frac{C_2 \epsilon}{\delta_0}\right) + \frac{1}{2}\right].$$

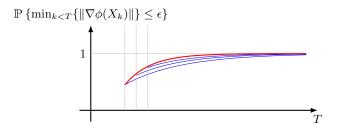
Every parameter is either from the algorithm or an assumption expect \hat{p}_0, \hat{p}_1 and t. We need to optimize the final result over them.

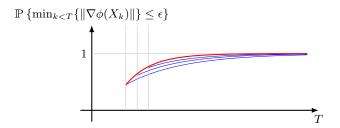
In addition, recall $\rho_k = \frac{f(x_k) - f(x_k + s_k) + r}{m(x_k) - m(x_k + s_k)}$ from the algorithm. What value should we use for r?



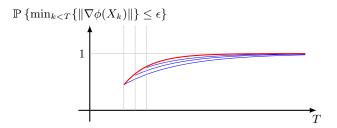








Unfortunately the optimal value for \hat{p}_0, \hat{p}_1 and t can not be expressed with basic mathematical operations.



Unfortunately the optimal value for \hat{p}_0 , \hat{p}_1 and t can not be expressed with basic mathematical operations.

Fortunately we have the optimal value

$$r = 2\epsilon_f + \frac{2}{a}\log\left(aC_1(\tau C_2\epsilon)^2\right).$$

- We also have result where we assume the noise is bounded like $|e(x)| \leq \epsilon_f$ instead of being subexponential. The optimal value for \hat{p}_1 has closed form.
- We are working on the second-order convergence proof.
- We hoped to use the weaker assumption $\mathbb{P}\left\{e(X_k) - e(X_k^+) + r > 0\right\} \ge p_0$. It might be possible because the loss at any accepted iteration is bounded:

$$\phi(x_{k+1}) \le \phi(x_k) + \langle \nabla \phi(x_k), s_k \rangle + \frac{L}{2} \|s_k\|^2 \le \phi(x_k) + \|\nabla \phi(x_k)\| \delta_k + \frac{L}{2} \delta_k^2.$$

- We also have result where we assume the noise is bounded like $|e(x)| \leq \epsilon_f$ instead of being subexponential. The optimal value for \hat{p}_1 has closed form.
- We are working on the second-order convergence proof.
- We hoped to use the weaker assumption $\mathbb{P}\left\{e(X_k) - e(X_k^+) + r > 0\right\} \ge p_0$. It might be possible because the loss at any accepted iteration is bounded:

$$\phi(x_{k+1}) \le \phi(x_k) + \langle \nabla \phi(x_k), s_k \rangle + \frac{L}{2} \|s_k\|^2 \le \phi(x_k) + \|\nabla \phi(x_k)\| \delta_k + \frac{L}{2} \delta_k^2.$$

Thank you!