Adapting DFO-TR for Hyperparameter Tuning Problems

Liyuan Cao

Lehigh University

November 10th, 2020

Black-Box Function

$$\min_{x \in \mathbb{R}^n} f(x) \tag{1}$$

$$x \longrightarrow f(x) = \sum_{i=1}^{N} \log(1 + \exp(y_i \cdot x^T \phi_i))) \longrightarrow f(x)$$

Figure: common function e.g. logistic regression

Black-Box Function

$$\min_{x \in \mathbb{R}^n} f(x) \tag{1}$$

$$x \longrightarrow f(x) = \sum_{i=1}^{N} \log(1 + \exp(y_i \cdot x^T \phi_i))) \longrightarrow f(x)$$

Figure: common function e.g. logistic regression

Figure: black-box function

Bandeira, Afonso S., Katya Scheinberg, and Luís Nunes Vicente. "Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization." *Mathematical programming* 134.1 (2012): 223-257.

derivative-free trust region method

Start with some x_c and some Δ . LOOP:

- **(**) Choose a sample set $y_0, y_1, y_2, \dots, y_p$ from the already evaluated points;
- 2 Calculate the interpolation model m(x);
- $If f(x_1) < f(x_c), then x_c \leftarrow x_1;$
- **6** Adjust Δ accordingly.

Figure: hyperparameter tuning as a black-box function

- evaluation is expensive
- noisy
- non-convex, multimodal
- non-smooth

Bayesmark (NeurIPS 2020 Black-Box Optimization Challenge Testing Set)

- hyperparameter tuning problems
- number of hyperparameters ≤ 9
- hyperparameters can be real, integer, Boolean, or categorical
- often non-convex, sometimes multimodal
- mostly noisy
- some are non-smooth, even have flat areas

Bayesmark (NeurIPS 2020 Black-Box Optimization Challenge Testing Set)

- hyperparameter tuning problems
- number of hyperparameters ≤ 9
- hyperparameters can be real, integer, Boolean, or categorical
- often non-convex, sometimes multimodal
- mostly noisy
- some are non-smooth, even have flat areas
- budget: 16 iterations, 8 evaluations per iteration

DFO-TR	Bayesmark
local optimization	non-convex, multimodal
$\mathbb{R}^n \to \mathbb{R}$	integer / boolean / categorical
unconstrained	box constraint
smooth	non-smooth
tiny noise	large noise
sequential	parallel

DFO-TR	Bayesmark
local optimization	non-convex, multimodal
sequential	parallel
$\mathbb{R}^n \to \mathbb{R}$	integer / boolean / categorical
unconstrained	box constraint
smooth	non-smooth
tiny noise	large noise

For easier handling of the box constraint:

Figure: L_2 -norm trust region

Figure: L_{∞} -norm trust region

DFO-TR2x4: In each iteration, two points are evaluated: the solution of the trust region subproblem and a poisedness improvement point. Each point is evaluated 4 times.

Figure: DFO-TR2x4 normalized loss on 60 continuous problems from Bayesmark¹

Liyuan Cao

INFORMS 2020

¹Some integer variables are treated as continuous ones.

Adaptation: Regression Instead of Interpolation

DFO-TRregression: In each iteration, 8 points are evaluated: the solution of the trust region subproblem and 7 poisedness improvement points.

Figure: DFO-TR regression normalized loss on 60 continuous problems from $${\rm Bayesmark}^2$$

Liyuan Cao

INFORMS 2020

²Some integer variables are treated as continuous ones.

Inspired by:

Krityakierne, Tipaluck, Taimoor Akhtar, and Christine A. Shoemaker. SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems. *Journal of Global Optimization* 66.3 : 417-437.

The iterate of each iteration is chosen by looking at 2 functions:

Start with some x_c a set of points and some Δ . LOOP:

- **()** Choose an evaluated point as the trust region center x_c ;
- ② Choose a sample set $y_0, y_1, y_2, \dots, y_p$ from the already evaluated points;
- **③** Calculate the interpolation model m(x);
- Solve $x_2 \leftarrow \arg \min_{x \in TR} \operatorname{density}(x);$
- If $f(x_1) < f(x_c)$, then $x_c \leftarrow x_1$;
- Adjust Δ accordingly, and assign the adjusted Δ to x_c , x_1 , and x_2 .

Liyuan Cao

INFORMS 2020

November 10th, 2020

Liyuan Cao

INFORMS 2020

November 10th, 2020

Liyuan Cao

INFORMS 2020

November 10th, 2020 31 / 43

Liyuan Cao

INFORMS 2020

November 10th, 2020

Liyuan Cao

INFORMS 2020

Liyuan Cao

INFORMS 2020

November 10th, 2020

Adaptation: Regression Instead of Interpolation

DFO-TRglobal: In each iteration, 8 points are evaluated: the solutions of the 4 trust region subproblems and 4 poisedness improvement points for each trust region.

Figure: DFO-TR regression normalized loss on 60 continuous problems from Bayes mark 3

Liyuan Cao

INFORMS 2020

³Some integer variables are treated as continuous ones.

- Improve the above techniques.
- Prove there efficiency theoretically and experimentally.